On the weight spaces of Lie superalgebra modules

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Lie Algebra Modules with Finite Dimensional Weight Spaces, I

Let g denote a reductive Lie algebra over an algebraically closed field of characteristic zero, and let I) denote a Cartan subalgebra of g. In this paper we study finitely generated g-modules that decompose into direct sums of finite dimensional l)-weight spaces. We show that the classification of irreducible modules in this category can be reduced to the classification of a certain class of ir...

متن کامل

On simple modules for the restricted Lie superalgebra gl(m|n)

In this paper, we study the simple modules for the restricted Lie superalgebra gl(m|n). A condition for the simplicity of the induced modules is given, and an analogue of Kac-Weisfeiler theorem is proved. Mathematics Subject Classification (2000): 17B50; 17B10.

متن کامل

Weight Modules of Direct Limit Lie Algebras

In this article we initiate a systematic study of irreducible weight modules over direct limits of reductive Lie algebras, and in particular over the simple Lie algebras A(∞), B(∞), C(∞) and D(∞). Our main tool is the shadow method introduced recently in [DMP]. The integrable irreducible modules are an important particular class and we give an explicit parametrization of the finite integrable m...

متن کامل

on direct sums of baer modules

the notion of baer modules was defined recently

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1992

ISSN: 0021-8693

DOI: 10.1016/0021-8693(92)90207-3